Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 13: 631172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967737

RESUMO

Cognitive impairment indicates disturbed brain physiology which can be due to various mechanisms including Alzheimer's pathology. Combined functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings (EEG-fMRI) can assess the interplay between complementary measures of brain activity and EEG changes to be localized to specific brain regions. We used a two-step approach, where we first examined changes related to a syndrome of mild cognitive impairment irrespective of pathology and then studied the specific impact of amyloid pathology. After detailed clinical and neuropsychological characterization as well as a positron emission tomography (PET) scans with the tracer 11-[C]-Pittsburgh Compound B to estimate cerebral amyloid deposition, 14 subjects with mild cognitive impairment (MCI) (mean age 75.6 SD: 8.9) according to standard criteria and 21 cognitively healthy controls (HCS) (mean age 71.8 SD: 4.2) were assessed with EEG-fMRI. Thalamo-cortical alpha-fMRI signal coupling was only observed in HCS. Additional EEG-fMRI signal coupling differences between HCS and MCI were observed in parts of the default mode network, salience network, fronto-parietal network, and thalamus. Individuals with significant cerebral amyloid deposition (amyloid-positive MCI and HCS combined compared to amyloid-negative HCS) displayed abnormal EEG-fMRI signal coupling in visual, fronto-parietal regions but also in the parahippocampus, brain stem, and cerebellum. This finding was paralleled by stronger absolute fMRI signal in the parahippocampus and weaker absolute fMRI signal in the inferior frontal gyrus in amyloid-positive subjects. We conclude that the thalamocortical coupling in the alpha band in HCS more closely reflects previous findings observed in younger adults, while in MCI there is a clearly aberrant coupling in several networks dominated by an anticorrelation in the posterior cingulate cortex. While these findings may broadly indicate physiological changes in MCI, amyloid pathology was specifically associated with abnormal fMRI signal responses and disrupted coupling between brain oscillations and fMRI signal responses, which especially involve core regions of memory: the hippocampus, para-hippocampus, and lateral prefrontal cortex.

2.
Front Aging Neurosci ; 9: 38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326033

RESUMO

Efficacy of future treatments depends on biomarkers identifying patients with mild cognitive impairment at highest risk for transitioning to Alzheimer's disease. Here, we applied recently developed analysis techniques to investigate cross-sectional differences in subcortical shape and volume alterations in patients with stable mild cognitive impairment (MCI) (n = 23, age range 59-82, 47.8% female), future converters at baseline (n = 10, age range 66-84, 90% female) and at time of conversion (age range 68-87) compared to group-wise age and gender matched healthy control subjects (n = 23, age range 61-81, 47.8% female; n = 10, age range 66-82, 80% female; n = 10, age range 68-82, 70% female). Additionally, we studied cortical thinning and global and local measures of hippocampal atrophy as known key imaging markers for Alzheimer's disease. Apart from bilateral striatal volume reductions, no morphometric alterations were found in cognitively stable patients. In contrast, we identified shape alterations in striatal and thalamic regions in future converters at baseline and at time of conversion. These shape alterations were paralleled by Alzheimer's disease like patterns of left hemispheric morphometric changes (cortical thinning in medial temporal regions, hippocampal total and subfield atrophy) in future converters at baseline with progression to similar right hemispheric alterations at time of conversion. Additionally, receiver operating characteristic curve analysis indicated that subcortical shape alterations may outperform hippocampal volume in identifying future converters at baseline. These results further confirm the key role of early cortical thinning and hippocampal atrophy in the early detection of Alzheimer's disease. But first and foremost, and by distinguishing future converters but not patients with stable cognitive abilities from cognitively normal subjects, our results support the value of early subcortical shape alterations and reduced hippocampal subfield volumes as potential markers for the early detection of Alzheimer's disease.

3.
Eur J Neurosci ; 45(10): 1241-1251, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27646656

RESUMO

Aß deposition is a driving force of Alzheimer's disease pathology and can be detected early by amyloid positron emission tomography. Identifying presymptomatic structural brain changes associated with Aß deposition might lead to a better understanding of its consequences and provide early diagnostic information. In this respect we analyzed measures of cortical thickness and subcortical volumes along with hippocampal, thalamic and striatal shape and surface area by applying novel analysis strategies for structural magnetic resonance imaging. We included 69 cognitively normal elderly subjects after careful clinical and neuropsychological workup. Standardized uptake value ratios (cerebellar reference) for uptake of 11-C-Pittsburgh Compound B (PiB) were calculated from positron emission tomographic data for a cortical measurement and for bilateral hippocampus, thalamus and striatum. Associations to shape, surface area, volume and cortical thickness were tested using regression models that included significant predictors as covariates. Left anterior hippocampal shape was associated with regional PiB uptake (P < 0.05, FDR corrected), whereas volumes of the hippocampi and their subregions were not associated with cortical or regional PiB uptake (all P > 0.05, FDR corrected). Within the entorhinal cortical region of both hemispheres, thickness was negatively associated with cortical PiB uptake (P < 0.05, FDR corrected). Hence, localized shape measures and cortical thickness may be potential biomarkers of presymptomatic Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Compostos de Anilina , Benzotiazóis , Feminino , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tiazóis
4.
J Alzheimers Dis ; 49(1): 237-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26444755

RESUMO

Alterations in brain structures, including progressive neurodegeneration, are a hallmark in patients with Alzheimer's disease (AD). However, pathological mechanisms, such as the accumulation of amyloid and the proliferation of tau, are thought to begin years, even decades, before the initial clinical manifestations of AD. In this study, we compare the brain anatomy of amnestic mild cognitive impairment patients (aMCI, n = 16) to healthy subjects (CS, n = 22) using cortical thickness, subcortical volume, and shape analysis, which we believe to be complimentary to volumetric measures. We were able to replicate "classical" cortical thickness alterations in aMCI in the hippocampus, amygdala, putamen, insula, and inferior temporal regions. Additionally, aMCI showed significant thalamic and striatal shape differences. We observed higher global amyloid deposition in aMCI, a significant correlation between striatal displacement and global amyloid, and an inverse correlation between executive function and right-hemispheric thalamic displacement. In contrast, no volumetric differences were detected in thalamic, striatal, and hippocampal regions. Our results provide new evidence for early subcortical neuroanatomical changes in patients with aMCI, which are linked to cognitive abilities and amyloid deposition. Hence, shape analysis may aid in the identification of structural biomarkers for identifying individuals at highest risk of conversion to AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Corpo Estriado/patologia , Hipocampo/patologia , Tálamo/patologia , Idoso , Idoso de 80 Anos ou mais , Amiloide/metabolismo , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
5.
Neurobiol Aging ; 36(4): 1619-1628, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25702957

RESUMO

Early uptake of [(11)C]-Pittsburgh Compound B (ePiB, 0-6 minutes) estimates cerebral blood flow. We studied ePiB in 13 PiB-negative and 10 PiB-positive subjects with mild cognitive impairment (MCI, n = 23) and 11 PiB-positive and 74 PiB-negative cognitively healthy elderly control subjects (HCS, n = 85) in 6 bilateral volumes of interest: posterior cingulate cortex (PCC), hippocampus (hipp), temporoparietal region, superior parietal gyrus, parahippocampal gyrus (parahipp), and inferior frontal gyrus (IFG) for the associations with cognitive status, age, amyloid deposition, and apolipoprotein E ε4-allele. We observed no difference in ePiB between PiB-positive and -negative subjects and carriers and noncarriers. EPiB decreased with age in PiB-positive subjects in bilateral superior parietal gyrus, bilateral temporoparietal region, right IFG, right PCC, and left parahippocampal gyrus but not in PiB-negative subjects. MCI had lower ePiB than HCS (left PCC, left IFG, and left and right hipp). Lowest ePiB values were found in MCI of 70 years and older, who also displayed high cortical PiB binding. This suggests that lowered regional cerebral blood flow indicated by ePiB is associated with age in the presence but not in the absence of amyloid pathology.


Assuntos
Envelhecimento/fisiologia , Proteínas Amiloidogênicas/metabolismo , Compostos de Anilina/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Disfunção Cognitiva/fisiopatologia , Fluxo Sanguíneo Regional , Tiazóis/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Alelos , Apolipoproteína E4/genética , Cognição , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
6.
Neurobiol Aging ; 36(1): 53-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25169676

RESUMO

The biomarker potential of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) for the in vivo characterization of preclinical stages in Alzheimer's disease has not yet been explored. We measured GABA, glutamate + glutamine (Glx), and N-acetyl-aspartate (NAA) levels by single-voxel MEGA-PRESS magnetic resonance spectroscopy in the posterior cingulate cortex of 21 elderly subjects and 15 patients with amnestic mild cognitive impairment. Participants underwent Pittsburgh Compound B positron emission tomography, apolipoprotein E (APOE) genotyping, and neuropsychological examination. GABA, Glx, and NAA levels were significantly lower in patients. NAA was lower in Pittsburgh Compound B-positive subjects and APOE ε4 allele carriers. GABA, Glx, and NAA levels were positively correlated to CERAD word learning scores. Reductions in GABA, Glx, and NAA levels may serve as metabolic biomarkers for cognitive impairment in amnestic mild cognitive impairment. Because GABA and Glx do not seem to reflect amyloid ß deposition or APOE genotype, they are less likely biomarker candidates for preclinical Alzheimer's disease.


Assuntos
Disfunção Cognitiva/metabolismo , Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/genética , Disfunção Cognitiva/genética , Feminino , Genótipo , Humanos , Masculino
7.
Front Aging Neurosci ; 6: 240, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249977

RESUMO

BACKGROUND: Accumulation of amyloid beta (Aß) may occur during healthy aging and is a risk factor for Alzheimer Disease (AD). While individual Aß-accumulation can be measured non-invasively using Pittsburgh Compund-B positron emission tomography (PiB-PET), Fluid-attenuated inversion recovery (FLAIR) is a Magnetic Resonance Imaging (MRI) sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR intensity. METHODS: Fourteen healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aß-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T). Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho), followed by Holm-Bonferroni correction for multiple testing. RESULTS: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right: rho = 0.86; left: rho = 0.84), Brainstem (rho = 0.85) and left Basal Ganglia vessel region (rho = 0.82). CONCLUSIONS: Our finding of a significant relationship between PiB- and FLAIR intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aß associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative processes such as AD.

8.
Front Aging Neurosci ; 6: 147, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071556

RESUMO

Recent studies have shown that increased cognitive intraindividual variability (IIV) across accuracy scores from tests representing different cognitive domains (across-domain IIV) might indicate prodromal Alzheimer's disease (AD). Although IIV has been proposed to index cognitive control processes, IIV across accuracy scores from cognitive control tasks (within-domain IIV) has not been examined in healthy controls subjects (HCS), mild cognitive impairment (MCI), and AD patients in a single comparative study. This study examines the discriminative properties of within-domain IIV, and across-domain IIV in 149 HCS, 31 MCI, and 26 AD. Three tasks representing different cognitive domains were identified to calculate across-domain IIV. Three other tasks representing cognitive control were identified to calculate within-domain IIV. The intraindividual standard deviation was calculated across accuracy scores. To compare IIV between groups, ANCOVAs with the covariates age, gender, education, and mean performance were computed. IIV scores in general were higher in AD vs. HCS (p < 0.01). Only across-domain IIV was higher in AD vs. MCI (p = 0.001), and only within-domain IIV was higher in MCI vs. HCS (p = 0.05). Within-domain IIV may constitute a cognitive marker for the detection of prodromal AD at the MCI stage, whereas across-domain IIV may detect beginning AD at the MCI stage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...